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Thus, this type of adjustment to the model reflects no added physical insight, but
rather stands as a purely empirical correction.

As a final comment, while Equation (3.123) implies this model has six closure
coefficients, there are actually only five. The coefficient C'cp appears only in
Equation (3.120) where it is multiplied by o, s0 aCcp is actually a single constant.

3.5 Application to Wall-Bounded Flows

We turn our attention now to application of the Cebeci-Smith and Baldwin-
Lomax models to wall-bounded flows, i.e., to flows with a solid boundary. The
no-slip boundary condition must be enforced for wall-bounded flows, and we
expect to find a viscous layer similar to that depicted in Figure 3.7. This section
first examines two internal flows, viz., channel flow and pipe flow. Then, we
consider external flows, i.e., boundary layers growing in a semi-infinite medium.

3.5.1 Channel and Pipe Flow

Like the free shear flow applications of Section 3.3, constant-section channel
and pipe flow are excellent building-block cases for testing a turbulence model.
Although we have the added complication of a solid boundary, the motion can
be described with ordinary differential equations and is therefore easy to analyze
mathematically. Also, experimental data are abundant for these flows.

The classical problems of flow in a channel, or duct, and a pipe are the ideal-
ized case of an infinitely long channel or pipe (Figure 3.11). This approximation
is appropriate provided we are not too close to the inlet of the channel/pipe so
that the flow has become fully-developed. For turbulent flow in a pipe, flow

Boundary-layer edge

i

T

Inlet e Fully-developed =

region flow

Figure 3.11: Fully-developed flow in a pipe or channel with the vertical scale
magnified.
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Noting that both channel and pipe flow are symmetric about the centerline,
we can obtain the complete solution by solving Equation (3.132) with r varying
between 0 and R. It is more convenient however to define y as the distance from

the wall so that
y=R-—r (3.133)

Hence, representing the Reynolds stress in terms of the eddy viscosity, i.e.,
—pu'v’ = p,pdU/dy, we arrive at the following equation for the velocity.

dU B y
St 1- ;) 3.1
(- ur) - = (1-% (3.134)

Finally, we introduce sublayer-scaled coordinates, U™ and y*, from Equa-
tion (3.100), as well as ;7 = pur/p. This results in the dimensionless form of
the momentum equation for channel flow and pipe flow, viz.,

au+t yt
+ — _ Pl
(1+“T>dy+ = (1 R+) (3.135)
where
RY =wu.R/v (3.136)

Equation (3.135) must be solved subject to the no-slip boundary condition at the
channel/pipe wall. Thus, we require

Ut(0)=0 (3.137)

At first glance, this appears to be a standard initial-value problem that can, in
principle, be solved using an integration scheme such as the Runge-Kutta method.
However, the problem is a bit more difficult, and for both the Cebeci-Smith and
Baldwin-Lomax models, the problem must be solved iteratively. That is, for the
Cebeci-Smith model, we don’t know U, and 6 a priori. Similarly, with the
Baldwin-Lomax model, we don’t know the values of Ugir and ymaz until we
have determined the entire velocity profile. This is not a serious complication
however, and the solution converges after just a few iterations.

The equations for channel and pipe flow can be conveniently solved using
a standard over-relaxation iterative procedure. Appendix C describes a program
called PIPE that yields a numerical solution for several turbulence models, in-
cluding the Cebeci-Smith and Baldwin-Lomax models.

Figure 3.12 compares computed two-dimensional channel-flow profiles with
Direct Numerical Simulation (DNS) results of Mansour, Kim and Moin (1988)
for Reynolds number based on channel height and average velocity of 13,750.
As shown, the Cebeci-Smith and Baldwin-Lomax velocity profiles are within
8% and 5%, respectively, of the DNS profiles. Computed Reynolds shear stress
profiles for both models differ from the DNS profiles by no more than 2%.
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